Mitotic post-translational modifications of histones promote chromatin compaction in vitro

نویسندگان

  • Alisa Zhiteneva
  • Juan Jose Bonfiglio
  • Alexandr Makarov
  • Thomas Colby
  • Paola Vagnarelli
  • Eric C Schirmer
  • Ivan Matic
  • William C Earnshaw
چکیده

How eukaryotic chromosomes are compacted during mitosis has been a leading question in cell biology since the nineteenth century. Non-histone proteins such as condensin complexes contribute to chromosome shaping, but appear not to be necessary for mitotic chromatin compaction. Histone modifications are known to affect chromatin structure. As histones undergo major changes in their post-translational modifications during mitotic entry, we speculated that the spectrum of cell-cycle-specific histone modifications might contribute to chromosome compaction during mitosis. To test this hypothesis, we isolated core histones from interphase and mitotic cells and reconstituted chromatin with them. We used mass spectrometry to show that key post-translational modifications remained intact during our isolation procedure. Light, atomic force and transmission electron microscopy analysis showed that chromatin assembled from mitotic histones has a much greater tendency to aggregate than chromatin assembled from interphase histones, even under low magnesium conditions where interphase chromatin remains as separate beads-on-a-string structures. These observations are consistent with the hypothesis that mitotic chromosome formation is a two-stage process with changes in the spectrum of histone post-translational modifications driving mitotic chromatin compaction, while the action of non-histone proteins such as condensin may then shape the condensed chromosomes into their classic mitotic morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribosyl)ated chromatin domains: access granted.

The seemingly static architecture of interphase and mitotic chromatin betrays an otherwise elegantly dynamic entity capable of remodelling itself to facilitate DNA replication, transcription, repair and recombination. Remodelling of local chromatin domains in response to physiological cues proceeds, at least in part, through transient cycles of relaxation and condensation that require use of hi...

متن کامل

Post-translational changes of histones, methylation level, and ERβ protein level in the cumulus cell genome of infertile women with endometriosis

Background: Endometriosis (which affects up to 50% of infertile women) is one of the major causes impacting female infertility. Endometriosis, defined as the presence of endometrial glands and stroma outside the uterine tissue, causes a wide range of functional disorders in the process of follicular development and changes in the follicular milieu, resulting in the formation of an incompetent o...

متن کامل

From Macroscopic to Mesoscopic Models of Chromatin Folding

An overview of the evolution of computer models for simulation of chromatin folding is presented. Chromatin is the protein/nucleic acid fiber that stores the genetic material in higher organisms. Many biological questions concerning the fiber structure and its dependence on internal and external factors remain a puzzle. Modeling and simulation can in theory provide molecular view for analysis, ...

متن کامل

Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry.

The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested i...

متن کامل

H4K20 methylation regulates quiescence and chromatin compaction

The transition between proliferation and quiescence is frequently associated with changes in gene expression, extent of chromatin compaction, and histone modifications, but whether changes in chromatin state actually regulate cell cycle exit with quiescence is unclear. We find that primary human fibroblasts induced into quiescence exhibit tighter chromatin compaction. Mass spectrometry analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017